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Secondary F1 uorescence Quenching Rate Constants of Eu3+ 

D20 by ETOH, CH3COOD and OH-Groups (H20) 
i n  

by 

JOHN CHRYSOCHOOS 

Department of Chemistry, The University of Toledo 
Toledo, O h i o  43606 

I t  has been shown recently t h a t  the fluorescence e f f ic iency  of 

Eu3+ in organic solvents i s  reduced to a d i f f e ren t  ex ten t  by the solvent 

molecules located in the primary and in the secondary solvation spheres 

of the 

nonradi a t i  ve quenching processes of t he  rare-earth i o n  , kh  , whereas 

molecules located in  the secondary so lva t ion  sphere were associated with 

The primary solvation sphere was associated with the 

a secondary fluorescence quenching e f f e c t  i .e 

s t ruc tu re  of the  primary solvation sphere was 

e f f e c t  upon the fluorescence e f f ic iency  and 1 

s ec or KSec. The 
ksolv Q 

found t o  exer t  a marked 

fetimes of ~m3+ i n  POcl3: 

SnC14(3). Furthermore, a pronounced e f f e c t ,  due to  both the primary and 

the secondary solvation sphere, was observed upon the  in t ens i ty  and the  

s p l i t t i n g  of absorption and emission bands o f  Eu3+ associated with e l e c t r i c -  

quadrupol e t rans i  t i  o n d 4 ) .  

To evaluate t h i s  e f f e c t  , accurate values of fluorescence quenching 

r a t e  constants a r e  needed, re la ted  t o  molecules both in the primary and 

the secondary solvation spheres. 

models f o r  e l ec t ron ic  exc i ta t ion  energy t r a n s f e r  from the  excited rare- 

ear th  ion t o  the vibrational overtones of the solvent i n  both spheres. 

Such values can be used t o  t e s t  various 
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CHRYSOCHOOS 

Enhancement i n  the  fluorescence e f f ic iency  of Eu3+ i n  aqueous so lu t ions  

upon replacing H20 w i t h  020 was demonstrated a few years  a g 0 ( ~ 3 ~ ) ,  and i t  has 

been a t t r i b u t e d  t o  coupling between the e l ec t ron ic  leve ls  of the rare-earth 

ions and some of the vibrational overtones of H20 and D20(7'8). Similar 

r e s u l t s  were observed i n  so lu t ions  of rare-earth ions i n  alcohols and i n  

deuterated alcohols(9).  

and secondary so lva t ion  spheres were concerned. In an attempt t o  obtain 

more quan t i t a t ive  information regarding this  e lec t ronic-v ibra t iona l  energy 

t r a n s f e r  process, we have employed so lu t ions  of EuC13 and E u ( N O ~ ) ~  in 99.8% 

D20 containing small amounts of appropriate quenchers. 

formed by dissolving Eup03 (99.9 t o  99.99%) in DC1 and D20 whereas E u ( N O 3 I 3  

was prepared by dissolving Eu2O3 by 70% HN03. 

5 x 10-2M i n  U20, contained 0.58M residual water. 

EuC13 and E u ( N O ~ ) ~ ,  5 x lom2#, were made in  ETOH, CH3COOH and H20. 

d i s t i l l e d  water was employed. 

These so lu t ions  were used i n  various combinations r e su l t i ng  i n  so lu t ions  o f  

5 x lO-*M EuC13 o r  EuN03 i n  various D20 quencher systems. 

However, n o  d i s t i nc t ion  was made as f a r  as primary 

The chloride was 

The l a t t e r  so lu t ions ,  

Furthermore, so lu t ions  of 

Triply 

Absolute ETOH and g lac ia l  CH3COOH were a l so  used. 

Emission spec t ra  were obtained by u s i n g  the Aminco-Bowman Spectrophoto- 

f luor imeter  w i t h  a 1P21 phototube and an X-Y recorder. 

spec t r a  a re  shown i n  Figure 1.  

a t  [ Q ] = O  and a t  f a i r l y  high concentration of Q. 

emission bands o f  E u C l 3  i n  D20 i n  the  absence and the  presence o f  5.20 M ETOH. 

The change i n  the  composition of the  so lva t ion  sphere has some e f f e c t  upon the 

r e l a t i v e  i n t e n s i t i e s  o f  the emission bands a t  591 and 614 mp. This e f f e c t  i s  

not observed i n  the case of EuC13 i n  D20-H20 (Figure lA(b) )  desp i te  the 

addition o f  11.7 M H20. The reason probably is  t h a t  these  two solvents a re  so  

s i m i l a r  i n  a l l  t h e i r  p roper t ies ,  t h a t  the  t r ans i t i on  p robab i l i t i e s  do not 

change although the composition of the  primary so lva t ion  sphere changes. 

Some typical emission 

In each system we show two extreme cases i . e .  

Figure lA(a)  shows the 
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QUENCHING RATE CONSTANTS 

WAVELENGTH, mp 

Figure 1. Fluorescence spectra o f  Eu3+ i n  D20 and in  D20-second solvent 

systems. iexc = 391 mp. ( A )  E u C 1 3  5 x M :  ( a )  in D20 and 

in U20 plus 5.20 M E t O H ;  ( b )  i n  D20 and in  D20 plus 11.7 M H20. 

( B )  E u ( N O ~ ) ~ ~  x 

D20 + 0.58 M H20 plus 3.42 M 

and in  $0 + 0.58 M 

H20 and i n  D20 + 0.58 M H20 plus 15 M H20. 

M: ( a )  in D20 + 0.58 M H20 and in 

CH3COOH; ( b )  i n  D20 + 0.58 M H20 
H20 p l u s  5.45 M ETOH; ( c )  in D20 + 0.58 M 

431. 
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CHRYSO CHOOS 

Figure lB(a )  shows the  emission bands of E u ( N O ~ ) ~  i n  D20 i n  the absence and 

the presence of  3.42 M CH3COOH. 

the primary so lva t ion  sphere upon the r e l a t i v e  i n t e n s i t i e s  of the two 

emission bands i s  pronounced. 

presence of 5.45 M ETOH (Figure lB(b ) )  and i t  i s  hardly observed i n  the  

presence of 15.0 M H20 (Figure lB(c) ) .  The r a t i o  of the intensities of 

the emission bands a t  591 and 614 mp r e f l e c t s  t he  r a t i o  in the p robab i l i t i e s  

of the t r ans i t i ons  5D0 -f 7F and 5D0 -+ 7F2 respectively(”).  Therefore, 

( I ~ ) ~ g l / ( I F ) 6 1 4  ’0 -f F1/ * F p *  

determined unless the  t r ans i t i on  p robab i l i t i e s  a r e  k e p t  constant.  

r e s u l t s  regarding the  dependence of this r a t i o  upon the concentration of the 

quencher added are  shown i n  Figure 28 f o r  both EuC13(a) and E U ( N O ~ ) ~ ( ~ )  i n  

D20-Q systems. 

o ther  hand addition of e i t h e r  ETOH o r  CH3COOH has a marked e f f e c t  upon the 

r a t io .  

fold. 

e f f ic iency  in the rad ia t ion less  deactivation of the excited rare-earth ion. 

The e f f e c t  of the change in the composition of 

This e f f e c t  i s  l e s s  pronounced in the 

’ Quenching r a t e  constants cannot be , 5  7 l 5  

Some 

A d d i t i o n  of H20 does not seem t o  a l t e r  t he  r a t io .  On the 

The e f f e c t  of the  composition of the  primary so lva t ion  sphere i s  two 

F i r s t  a change i n  the  t r ans i t i on  p robab i l i t i e s  and second a d i f f e r e n t  

Both e f f e c t s  have t o  be avoided i n  order t h a t  accurate quenching r a t e  con- 

s t a n t s  can be determined. 

much less than 3 M of the  second so lvent  t o  achieve t h i s  goal.  

these r a t e  constants have t o  be independent of the  concentration of Eu3+. 

The lack of such self-quenching process i s  i l l u s t r a t e d  i n  Figure 2A. Self-  

quenching according t o  the process : 

I t  i s  obvious from Figure 2B t h a t  one has t o  use 

Furthermore, 

Eu3+(’Do) + E U ~ + ( ~ F ~ )  +. 2 E u ~ + ( ~ F )  

E U ~ + ( ~ D ~ )  + 2 E u ~ ’ ( ~ F , )  -+ 3 E u ~ + ( ~ F )  

(1 1 

is  not energe t ica l ly  f e a s i b l e  ( l o )  A t  very high [Eu3+] the  process: 

(2 1 

may become very s l i g h t l y  probable. 

systems under study. 

This i s  c l ea r ly  n o t  the  case in the 
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QUENCHING RATE CONSTANTS 

( A )  

0- (b) ,-o-o__o 0 

-7-- 0 

A A . A C o \  (b) 
\ (b l  

0 5 10 
[Protic ~ o i v e n i ] ,  M 

4 

F igu re  2. (A) 
D20: iexc = 391 mp. 

( B )  

of t he  p r o t i c  s o l v e n t  p resen t ;  heXC = 391 m\J. 

5 x M i n  D20: O i n  t h e  presence o f  H20; e i n  t he  presence 

of ETOH. (b) E u ( N O ~ ) ~  5 x lO-*M i n  D20 + 0.58 M H20: 

t h e  presence o f  H20; 

presence o f  CH3COOH. 

V a r i a t i o n  of ( IF)591/( l -10-EcL)  vs [Eu3+] f o r  EuC13 i n  

V a r i a t i o n  o f  t h e  r a t i o  ( I F ) 5 9 , / ( I F ) 6 , 4  vs t h e  c o n c e n t r a t i o n  

( a )  EuC13 

0 i n  

i n  the  presence o f  ETOH and A i n  t h e  
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CHRYSOCHOOS 

The spect roscopy o f  EuC13 o r  Eu(NO3l3 i n  D20 and i n  t h e  presence of 

ve ry  sma l l  amounts o f  ETOH can be o u t l i n e d  as f o l l o w s :  

3 

Eu3+(5Do) Pr imary S o l v a t i o n  > Eu3+i7F) + hea t ;  kh (4 1 
Sohere 

3+ 5 Eu 3+ ( 7 F )  + hvpl ; k f l  Eu ( Do) -> 

E U ~ + ( ~ D ~ )  + D20 -f Eu3+(’F) + hea t ;  ksec 
D O  

2 

E U ~ + ( ~ D ~ )  + ETOH + E u ~ + ( ~ F )  + hea t ;  kSec 
ETOH 

This  mechanism g i ves  r i s e  t o  t h e  f o l l o w i n g  equa t ion :  

sec 
( 1 ~ ) ~  / (IF) = 1 + k [ETOH] / {kfl + kh + ksec[D20]) 

ETOH E TOH D2 O 

where ( 1 ~ ) ~  r e f e r s  t o  

o f  EuC13 and Eu(N0313 

Therefore,  

k f l  + kh + kSec 
D O  
2 and 

t h e  f l uo rescence  i n t e n s i t y  a t  [ETOH] = 0. 

were found t o  be 2.27 and 1.90 msec r e s p e c t i v e l y  

The l i f e t i m e s  
(11 1 . 

(11) -1 2 
[D20] = T = 4.40 x 10 sec” (EuC13) 

(111) kfl + k  + kSec [D20] = 5.25 x 10 2 sec - l  ( E u ( N O ~ ) ~ )  
h D20 

Resu l t s  showing t h e  v a r i a t i o n  o f  (IF)o/(IF)EToH vs [ETOH] 

a r e  i l l u s t r a t e d  i n  F i g u r e  3. 

comes v e r y  obv ious as [ETOH] increases.  However, t h e  i n i t i a l  s lopes a r e  

independent  o f  such an e f f e c t .  

The e f f e c t  o f  t h e  p r imary  s o l v a t i o n  sphere be- 

By u s i n g  these  i n i t i a l  s lopes,  i.e. 

+kh + kSec [D20]l 
Ikf l  UZO 

Slope = kSec 
ETOH 

and Equations (11) and (111) one can e a s i l y  o b t a i n :  

Slope =< kSec / T-’ 
ET OH 
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QUENCHING RATE CONSTANTS 

a 

A 

0 

A . .  

0 r 

0 - Ib 
[ETOH], M 

F igu re  3. V a r i a t i o n  o f  t h e  r a t i o  ( 1 ~ ) ~  / (IF)EToH as a f u n c t i o n  o f  [ETOH]; 

A = 391 mu;O x ~ ,  = 591 rnp; A = 614 mu 

(A) 
i n  D20 + 0.58 M H20 p l u s  ETOH. 

exc 
EuC15 5 x lo-* M i n  D20 - ETOH (B) E u ( N O ~ ) ~  5 x 10-'F1 
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CHRYSOCHOOS 

The inequal i ty  sign i s  needed because as [ETOH] increases [D20] decreases. 

From Equation (V) we obtain 

k ~ e c  > 

E TOH 
= 104 t4-I sec-’ f o r  EuC13 

kSec =’ 80 f4-l sec-’ f o r  E u ( N O ~ ) ~  
E TOH 

The spectroscopy o f  EuC13 and E u ( N O ~ ) ~  i n  the systems D20-H20 and 

D20-CH3COOH is almost s imi la r .  

equ i l ib r i a :  

One has t o  consider the  isotope-exchange 

D20 + H20 2HOD ( 8 )  

D20 + CH3COOH HOD + CH3COOD (9  1 

A t  very low [H,O] or [CH3COOH] i t  i s  obvious t h a t  [HOD] = 2 [H20] and 

[OH-group] = [CH3COOD] = [CH3COOH]. 

< 2[H20] and a t  very high [H20] fu r the r  addition of water will  have no net 

e f f e c t  upon the  concentration of such groups i . e .  

Of course a t  higher [H20], [OH-groups] 

H O D  + H20 H20 + HOD 

The spectroscopy of EoC13 and Eu(N03)3 in  these  systems will be ident ica l  

t o  t h a t  in ETOH with the only exception t h a t  reaction ( 7 )  wi l l  be replaced by 

+ H20 -+ E u ~ + ( ~ F )  + heat;  2ksec  OH (10) 

and 
E U ~ + ( ~ D ~ )  + CH3COOH -f Eu3+ (7F)  + heat;(ksec + kSec 1 (11) OH CH3COOD 

Equation ( I )  can be expressed under these conditions as follows: 
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QUENCHING RATE CONSTANTS 

for both EuC13 and E u ( N O ~ ) ~  i n  the systems D20-H20 and D20-CH3C00F 

respectively. 

D20-H20, ( 1 ~ ) ~  i s  obtained by extrapolation due to  the residual amount of 

H20(0.58M) present. 

I t  should be pointed out t h a t  i n  the case of E u ( N O ~ ) ~  i n  

Results p lo t ted  according t o  Equations (VI) and (VII) a r e  shown in 

Figure 4. 

f o r  E u ( N O ~ ) ~  i n  D20. 

function of [H20] f o r  E u ( N O ~ ) ~  i n  D20 and Figure (4C) depic t s  a s imi l a r  

variation. f o r  E u C 1 3  in D20. 

are apparent as trie concentration of the second solvent increases. 

i n i t i a l  slopes and the appropriate fluorescence l ifetimes(’’)  we obtain: 

Figure 4A exhib i t s  the var ia t ion  of (IF), / ( IF)Q vs [CH3COOH] 

Figure (46)  depicts the  var ia t ion  o f  t he  r a t i o  a s  a 

Severe deviations from the Stern-Volmer Equation 

From the 

f o r  

fo r  

and 

1 Slope =< 2ksec / T -  OH 
both EuC13 and E u ( N O 3 l 3  in D20 and 

-1 Slope f ( k s e c  + kSec / T  
OH CH3COOD) 

Eu(NO3I3 i n  D20. Therefore, 

k ~ e c  _> - 117 M-l sec-’ f o r  EuC13; kSec =’ 165 l4-l sec-’ for  E u ( N O ~ ) ~  
OH OH 

ksec + kSec 

3 
2 205 M-l sec-’ fo r  E u ( N O ~ ) ~  

OH CH COOD 

consequent 1 y : 

(VIII)  

ksec 2 40 M-l sec-’ f o r  Eu(N03)3 
CH3COOD 

The Yalues obtained here and appropriate comparative values from the 

l i t e r a t u r e  are given i n  Table 1 .  
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3 7 (A)  

. 
/ . 0 

. 
. 

I 

0' 
0 6 12 

M 

F igu re  4. V a r i a t i o n  o f  t h e  r a t i o  (IF)o / ( 1 ~ ) ~  w i t h  [Q]; A = 391 mu; 
exc 

( A )  Eu(ii03)g 5 x lO-'M i n  

EuC13 5 x 10m2M i n  D20 - 
E u ( N O ~ ) ~  5 x lO-*M i n  D20 + 0.58 M H20 p l u s  H20. 

0 h f l  = 591 mu; A Xfl = 614 rnp. 

D20 + 0.58 M H20 p l u s  CH3COOH. 

H20 and ( C )  
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