

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Secondary Fluorescence Quenching Rate Constants of Eu³ in D₂O by ETOH, CH₃COOD and OH-Groups (H₂O)

John Chryschoos^a

^a Department of Chemistry, The University of Toledo, Toledo, Ohio

To cite this Article Chryschoos, John(1972) 'Secondary Fluorescence Quenching Rate Constants of Eu³ in D₂O by ETOH, CH₃COOD and OH-Groups (H₂O)', *Spectroscopy Letters*, 5: 11, 429 — 440

To link to this Article: DOI: 10.1080/00387017208065412

URL: <http://dx.doi.org/10.1080/00387017208065412>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Secondary Fluorescence Quenching Rate Constants of Eu^{3+}
in
 D_2O by ETOH , CH_3COOD and OH-Groups (H_2O)
by

JOHN CHRYSOCHOOS

Department of Chemistry, The University of Toledo
Toledo, Ohio 43606

It has been shown recently that the fluorescence efficiency of Eu^{3+} in organic solvents is reduced to a different extent by the solvent molecules located in the primary and in the secondary solvation spheres of the ion^(1,2). The primary solvation sphere was associated with the nonradiative quenching processes of the rare-earth ion, k_h , whereas molecules located in the secondary solvation sphere were associated with a secondary fluorescence quenching effect i.e. $k_{\text{solv}}^{\text{sec}}$ or k_Q^{sec} . The structure of the primary solvation sphere was found to exert a marked effect upon the fluorescence efficiency and lifetimes of Sm^{3+} in POCl_3 : SnCl_4 ⁽³⁾. Furthermore, a pronounced effect, due to both the primary and the secondary solvation sphere, was observed upon the intensity and the splitting of absorption and emission bands of Eu^{3+} associated with electric-quadrupole transitions⁽⁴⁾.

To evaluate this effect, accurate values of fluorescence quenching rate constants are needed, related to molecules both in the primary and the secondary solvation spheres. Such values can be used to test various models for electronic excitation energy transfer from the excited rare-earth ion to the vibrational overtones of the solvent in both spheres.

Enhancement in the fluorescence efficiency of Eu^{3+} in aqueous solutions upon replacing H_2O with D_2O was demonstrated a few years ago^(5,6), and it has been attributed to coupling between the electronic levels of the rare-earth ions and some of the vibrational overtones of H_2O and D_2O ^(7,8). Similar results were observed in solutions of rare-earth ions in alcohols and in deuterated alcohols⁽⁹⁾. However, no distinction was made as far as primary and secondary solvation spheres were concerned. In an attempt to obtain more quantitative information regarding this electronic-vibrational energy transfer process, we have employed solutions of EuCl_3 and $\text{Eu}(\text{NO}_3)_3$ in 99.8% D_2O containing small amounts of appropriate quenchers. The chloride was formed by dissolving Eu_2O_3 (99.9 to 99.99%) in DCl and D_2O whereas $\text{Eu}(\text{NO}_3)_3$ was prepared by dissolving Eu_2O_3 by 70% HNO_3 . The latter solutions, $5 \times 10^{-2}\text{M}$ in D_2O , contained 0.58M residual water. Furthermore, solutions of EuCl_3 and $\text{Eu}(\text{NO}_3)_3$, $5 \times 10^{-2}\text{M}$, were made in ETOH , CH_3COOH and H_2O . Triply distilled water was employed. Absolute ETOH and glacial CH_3COOH were also used. These solutions were used in various combinations resulting in solutions of $5 \times 10^{-2}\text{M}$ EuCl_3 or EuNO_3 in various D_2O quencher systems.

Emission spectra were obtained by using the Aminco-Bowman Spectrophotofluorimeter with a 1P21 phototube and an X-Y recorder. Some typical emission spectra are shown in Figure 1. In each system we show two extreme cases i.e. at $[\text{Q}]=0$ and at fairly high concentration of Q . Figure 1A(a) shows the emission bands of EuCl_3 in D_2O in the absence and the presence of 5.20 M ETOH . The change in the composition of the solvation sphere has some effect upon the relative intensities of the emission bands at 591 and 614 $\text{m}\mu$. This effect is not observed in the case of EuCl_3 in $\text{D}_2\text{O}-\text{H}_2\text{O}$ (Figure 1A(b)) despite the addition of 11.7 M H_2O . The reason probably is that these two solvents are so similar in all their properties, that the transition probabilities do not change although the composition of the primary solvation sphere changes.

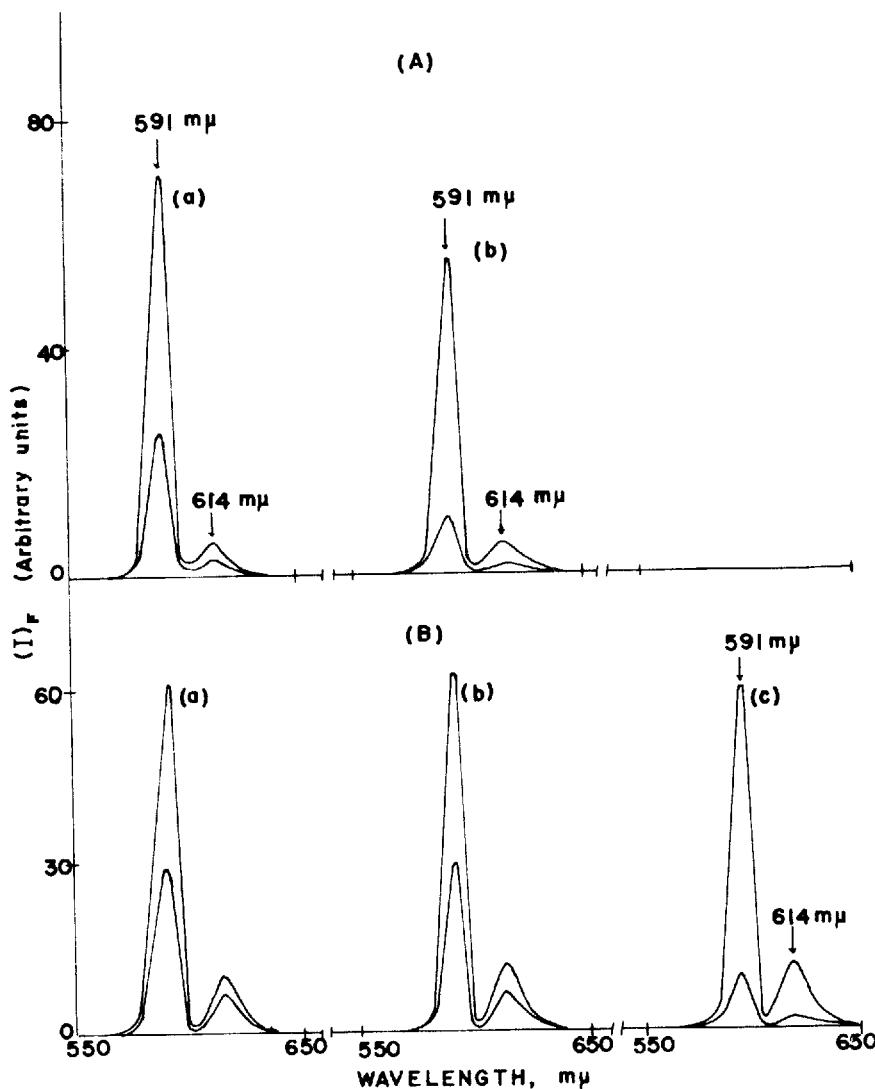
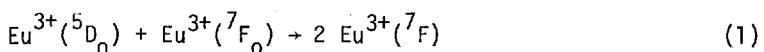
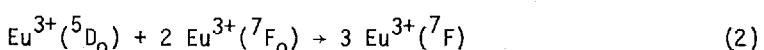
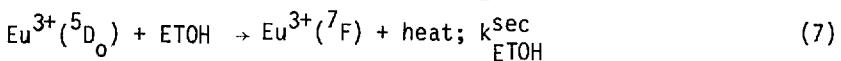
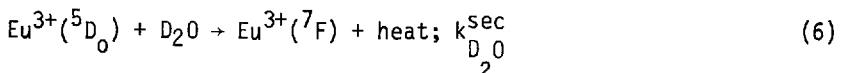
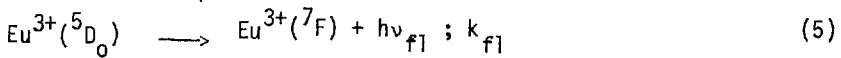
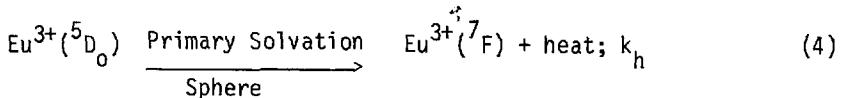
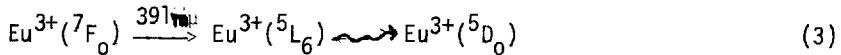




Figure 1. Fluorescence spectra of Eu^{3+} in D_2O and in D_2O -second solvent systems. $\lambda_{\text{exc}} = 391 \text{ m}\mu$. (A) $\text{EuCl}_3 5 \times 10^{-2} \text{ M}$: (a) in D_2O and in D_2O plus 5.20 M EtOH; (b) in D_2O and in D_2O plus 11.7 M H_2O . (B) $\text{Eu}(\text{NO}_3)_3 5 \times 10^{-2} \text{ M}$: (a) in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ and in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ plus 3.42 M CH_3COOH ; (b) in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ and in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ plus 5.45 M EtOH; (c) in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ and in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ plus 15 M H_2O .

Figure 1B(a) shows the emission bands of $\text{Eu}(\text{NO}_3)_3$ in D_2O in the absence and the presence of 3.42 M CH_3COOH . The effect of the change in the composition of the primary solvation sphere upon the relative intensities of the two emission bands is pronounced. This effect is less pronounced in the presence of 5.45 M ETOH (Figure 1B(b)) and it is hardly observed in the presence of 15.0 M H_2O (Figure 1B(c)). The ratio of the intensities of the emission bands at 591 and 614 $\text{m}\mu$ reflects the ratio in the probabilities of the transitions $5\text{D}_0 \rightarrow 7\text{F}_1$ and $5\text{D}_0 \rightarrow 7\text{F}_2$ respectively (10). Therefore, $(I_F)_{591}/(I_F)_{614} \propto 5\text{D}_0 \rightarrow 7\text{F}_1/5\text{D}_0 \rightarrow 7\text{F}_2$. Quenching rate constants cannot be determined unless the transition probabilities are kept constant. Some results regarding the dependence of this ratio upon the concentration of the quencher added are shown in Figure 2B for both EuCl_3 (a) and $\text{Eu}(\text{NO}_3)_3$ (b) in $\text{D}_2\text{O}-\text{Q}$ systems. Addition of H_2O does not seem to alter the ratio. On the other hand addition of either ETOH or CH_3COOH has a marked effect upon the ratio. The effect of the composition of the primary solvation sphere is two fold. First a change in the transition probabilities and second a different efficiency in the radiationless deactivation of the excited rare-earth ion. Both effects have to be avoided in order that accurate quenching rate constants can be determined. It is obvious from Figure 2B that one has to use much less than 3 M of the second solvent to achieve this goal. Furthermore, these rate constants have to be independent of the concentration of Eu^{3+} . The lack of such self-quenching process is illustrated in Figure 2A. Self-quenching according to the process:

is not energetically feasible⁽¹⁰⁾. At very high $[\text{Eu}^{3+}]$ the process:

may become very slightly probable. This is clearly not the case in the systems under study.

Figure 2. (A) Variation of $(I_F)_{591} / (1 - 10^{-\epsilon CL})$ vs $[Eu^{3+}]$ for $EuCl_3$ in D_2O : $\lambda_{exc} = 391 \text{ m}\mu$.
 (B) Variation of the ratio $(I_F)_{591} / (I_F)_{614}$ vs the concentration of the protic solvent present; $\lambda_{exc} = 391 \text{ m}\mu$. (a) $EuCl_3$ $5 \times 10^{-2} \text{ M}$ in D_2O : ○ in the presence of H_2O ; ● in the presence of CH_3COOH . (b) $Eu(NO_3)_3$ $5 \times 10^{-2} \text{ M}$ in $D_2O + 0.58 \text{ M } H_2O$: ○ in the presence of H_2O ; ● in the presence of CH_3COOH and △ in the presence of CH_3COOH .

The spectroscopy of EuCl_3 or $\text{Eu}(\text{NO}_3)_3$ in D_2O and in the presence of very small amounts of ETOH can be outlined as follows:

This mechanism gives rise to the following equation:

$$\frac{(I_F)_0}{(I_F)_{\text{ETOH}}} = 1 + k_{\text{ETOH}}^{\text{sec}} [\text{ETOH}] / \{k_{f1} + k_h + k_{D_2\text{O}}^{\text{sec}} [\text{D}_2\text{O}]\} \quad (I)$$

where $(I_F)_0$ refers to the fluorescence intensity at $[\text{ETOH}] = 0$. The lifetimes of EuCl_3 and $\text{Eu}(\text{NO}_3)_3$ were found to be 2.27 and 1.90 msec respectively (11).

Therefore,

$$k_{f1} + k_h + k_{D_2\text{O}}^{\text{sec}} [\text{D}_2\text{O}] = \tau^{-1} = 4.40 \times 10^2 \text{ sec}^{-1} (\text{EuCl}_3) \quad (II)$$

and

$$k_{f1} + k_h + k_{D_2\text{O}}^{\text{sec}} [\text{D}_2\text{O}] = 5.25 \times 10^2 \text{ sec}^{-1} (\text{Eu}(\text{NO}_3)_3) \quad (III)$$

Results showing the variation of $(I_F)_0 / (I_F)_{\text{ETOH}}$ vs $[\text{ETOH}]$

are illustrated in Figure 3. The effect of the primary solvation sphere becomes very obvious as $[\text{ETOH}]$ increases. However, the initial slopes are independent of such an effect. By using these initial slopes, i.e.

$$\text{Slope} = k_{\text{ETOH}}^{\text{sec}} / \{k_{f1} + k_h + k_{D_2\text{O}}^{\text{sec}} [\text{D}_2\text{O}]\} \quad (IV)$$

and Equations (II) and (III) one can easily obtain:

$$\text{Slope} \leq k_{\text{ETOH}}^{\text{sec}} / \tau^{-1} \quad (V)$$

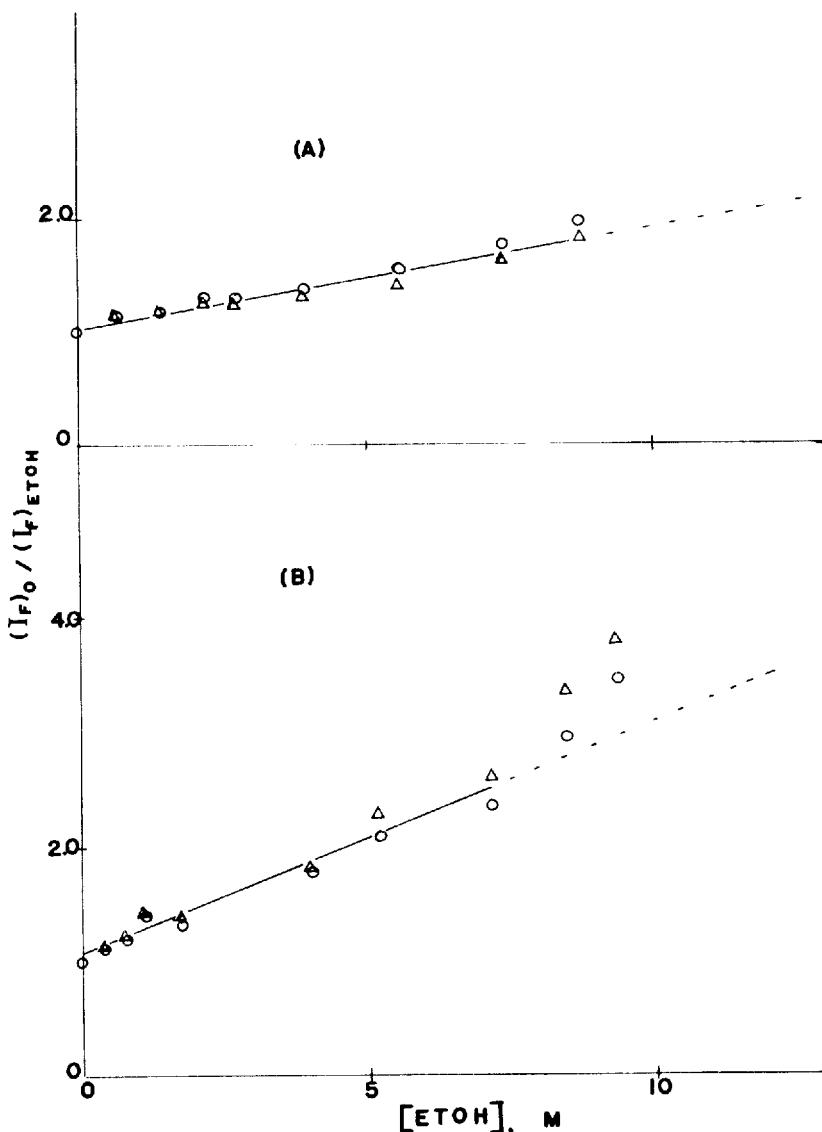
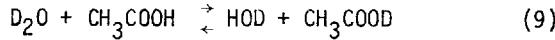
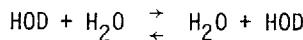


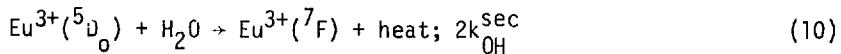
Figure 3. Variation of the ratio $(I_F)_0 / (I_F)_{\text{ETOH}}$ as a function of $[\text{ETOH}]$;
 $\lambda_{\text{exc}} = 391 \text{ m}\mu$; \circ $\lambda_{f1} = 591 \text{ m}\mu$; Δ $\lambda_{f1} = 614 \text{ m}\mu$
 (A) $\text{EuCl}_5 5 \times 10^{-2} \text{ M}$ in D_2O - ETOH (B) $\text{Eu}(\text{NO}_3)_3 5 \times 10^{-2} \text{ M}$
 in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ plus ETOH.

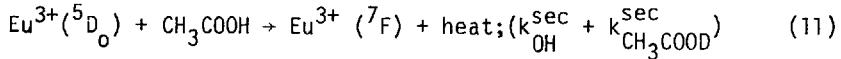

The inequality sign is needed because as [ETOH] increases $[D_2O]$ decreases.

From Equation (V) we obtain


$$k_{ETOH}^{\text{sec}} \geq 104 \text{ M}^{-1} \text{ sec}^{-1} \text{ for } \text{EuCl}_3$$

$$k_{ETOH}^{\text{sec}} \geq 80 \text{ M}^{-1} \text{ sec}^{-1} \text{ for } \text{Eu(NO}_3)_3$$


The spectroscopy of EuCl_3 and $\text{Eu(NO}_3)_3$ in the systems D_2O-H_2O and $D_2O-\text{CH}_3\text{COOH}$ is almost similar. One has to consider the isotope-exchange equilibria:


At very low $[H_2O]$ or $[\text{CH}_3\text{COOH}]$ it is obvious that $[\text{HOD}] = 2[H_2O]$ and $[\text{OH-group}] = [\text{CH}_3\text{COOD}] = [\text{CH}_3\text{COOH}]$. Of course at higher $[H_2O]$, $[\text{OH-groups}] < 2[H_2O]$ and at very high $[H_2O]$ further addition of water will have no net effect upon the concentration of such groups i.e.

The spectroscopy of EuCl_3 and $\text{Eu(NO}_3)_3$ in these systems will be identical to that in ETOH with the only exception that reaction (7) will be replaced by

and

Equation (I) can be expressed under these conditions as follows:

$$(\text{I}_F)_0 / (\text{I}_F)_Q = 1 + 2k_{OH}^{\text{sec}} [\text{H}_2\text{O}] / \{k_f + k_h + k_{D_2O}^{\text{sec}} [\text{D}_2\text{O}]\} \quad (VI)$$

and

$$(\text{I}_F)_0 / (\text{I}_F)_Q = 1 + \{k_{OH}^{\text{sec}} + k_{\text{CH}_3\text{COOD}}^{\text{sec}}\} [\text{CH}_3\text{COOH}] / \{k_f + k_h + k_{D_2O}^{\text{sec}} [\text{D}_2\text{O}]\} \quad (VII)$$

for both EuCl_3 and $\text{Eu}(\text{NO}_3)_3$ in the systems $\text{D}_2\text{O}-\text{H}_2\text{O}$ and $\text{D}_2\text{O}-\text{CH}_3\text{COOH}$ respectively. It should be pointed out that in the case of $\text{Eu}(\text{NO}_3)_3$ in $\text{D}_2\text{O}-\text{H}_2\text{O}$, $(\text{IF})_0$ is obtained by extrapolation due to the residual amount of $\text{H}_2\text{O}(0.58\text{M})$ present.

Results plotted according to Equations (VI) and (VII) are shown in Figure 4. Figure 4A exhibits the variation of $(\text{IF})_0 / (\text{IF})_Q$ vs $[\text{CH}_3\text{COOH}]$ for $\text{Eu}(\text{NO}_3)_3$ in D_2O . Figure (4B) depicts the variation of the ratio as a function of $[\text{H}_2\text{O}]$ for $\text{Eu}(\text{NO}_3)_3$ in D_2O and Figure (4C) depicts a similar variation for EuCl_3 in D_2O . Severe deviations from the Stern-Volmer Equation are apparent as the concentration of the second solvent increases. From the initial slopes and the appropriate fluorescence lifetimes⁽¹¹⁾ we obtain:

$$\text{Slope} \leq 2k_{\text{OH}}^{\text{sec}} / \tau^{-1} \quad (\text{VIII})$$

for both EuCl_3 and $\text{Eu}(\text{NO}_3)_3$ in D_2O and

$$\text{Slope} \leq (k_{\text{OH}}^{\text{sec}} + k_{\text{CH}_3\text{COOD}}^{\text{sec}}) / \tau^{-1} \quad (\text{IX})$$

for $\text{Eu}(\text{NO}_3)_3$ in D_2O . Therefore,

$$k_{\text{OH}}^{\text{sec}} \geq 117 \text{ M}^{-1} \text{ sec}^{-1} \text{ for } \text{EuCl}_3; k_{\text{OH}}^{\text{sec}} \geq 165 \text{ M}^{-1} \text{ sec}^{-1} \text{ for } \text{Eu}(\text{NO}_3)_3$$

$$k_{\text{OH}}^{\text{sec}} + k_{\text{CH}_3\text{COOD}}^{\text{sec}} \geq 205 \text{ M}^{-1} \text{ sec}^{-1} \text{ for } \text{Eu}(\text{NO}_3)_3$$

and consequently:

$$k_{\text{CH}_3\text{COOD}}^{\text{sec}} \geq 40 \text{ M}^{-1} \text{ sec}^{-1} \text{ for } \text{Eu}(\text{NO}_3)_3$$

The values obtained here and appropriate comparative values from the literature are given in Table 1.

Acknowledgment

This project was supported by Owens-Illinois (Corporate Research Laboratories) for which we are grateful.

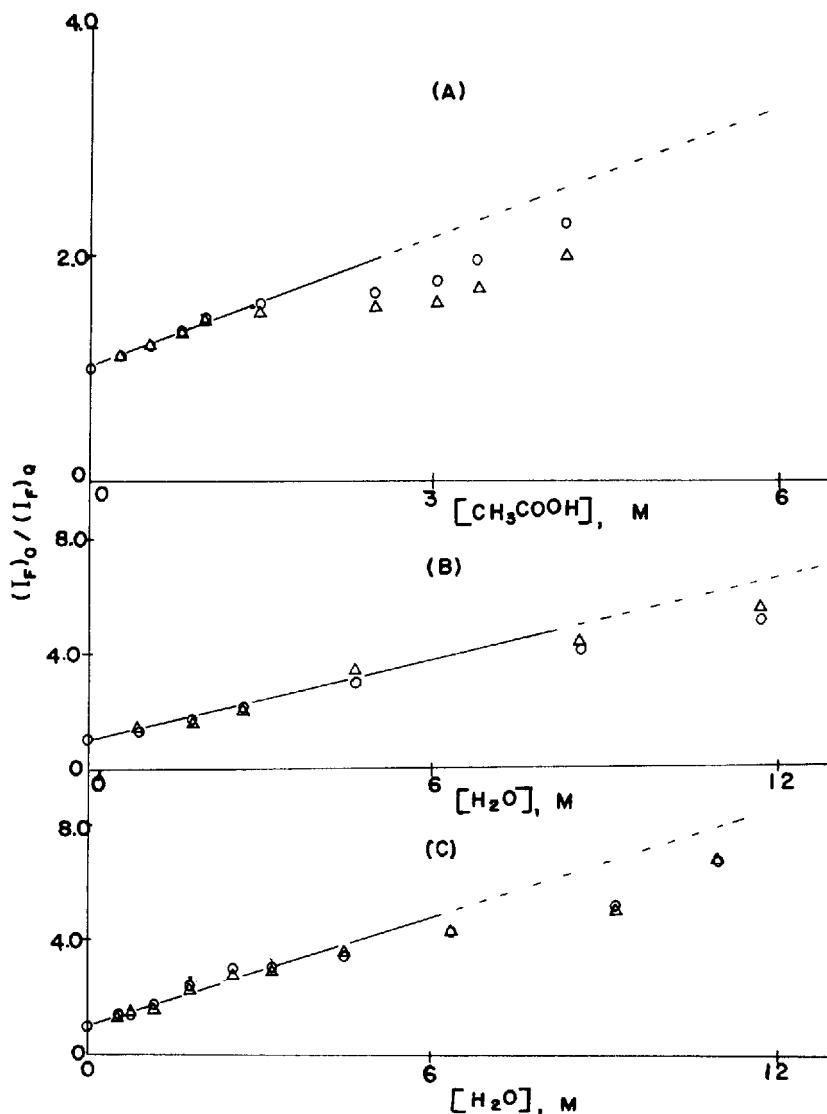


Figure 4. Variation of the ratio $(I_F)_0 / (I_F)_Q$ with $[Q]$; $\lambda_{\text{exc}} = 391 \text{ m}\mu$; $\circ \lambda_{f1} = 591 \text{ m}\mu$; $\triangle \lambda_{f1} = 614 \text{ m}\mu$. (A) $\text{Eu}(\text{NO}_3)_3 5 \times 10^{-2} \text{M}$ in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ plus CH_3COOH . (B) $\text{EuCl}_3 5 \times 10^{-2} \text{M}$ in $\text{D}_2\text{O} - \text{H}_2\text{O}$ and (C) $\text{Eu}(\text{NO}_3)_3 5 \times 10^{-2} \text{M}$ in $\text{D}_2\text{O} + 0.58 \text{ M H}_2\text{O}$ plus H_2O .

QUENCHING RATE CONSTANTS

TABLE 1

SECONDARY FLUORESCENCE QUENCHING RATE CONSTANTS

FOR

 Eu^{3+} in SOLUTION

PRIMARY SOLVATION SPHERE		Reference
CH_3COOH	EuCl_3	
$k_{\text{CH}_3\text{COOH}}^{\text{sec}} \geq 61 \text{ M}^{-1}\text{sec}^{-1}$	D_2O	(1)
$k_{\text{CH}_3\text{COOH}}^{\text{sec}} \geq 14 \text{ M}^{-1}\text{sec}^{-1}$	$\text{Eu}(\text{NO}_3)_3$	This Work
$k_{\text{CH}_3\text{COCl}}^{\text{sec}} \geq 24 \text{ M}^{-1}\text{sec}^{-1}$		(1)
$k_{\text{CH}_3\text{COOH}}^{\text{sec}} \geq 17 \text{ M}^{-1}\text{sec}^{-1}$; $k_{\text{CH}_3\text{COOH}}^{\text{sec}} \geq 80 \text{ M}^{-1}\text{sec}^{-1}$		This Work
$k_{\text{H}_2\text{O}}^{\text{sec}}$ (for H_2O) $\geq 17 \text{ M}^{-1}\text{sec}^{-1}$; $k_{\text{H}_2\text{O}}^{\text{sec}} \geq 165 \text{ M}^{-1}\text{sec}^{-1}$		This Work
$k_{\text{CH}_3\text{COOH}}^{\text{sec}} \geq 55 \text{ M}^{-1}\text{sec}^{-1}$	$\text{k}_{\text{CH}_3\text{COOH}}^{\text{sec}} \geq 40 \text{ M}^{-1}\text{sec}^{-1}$	(1)
$k_{\text{C}_2\text{H}_5\text{COOH}}^{\text{sec}} \geq 57 \text{ M}^{-1}\text{sec}^{-1}$	$\text{k}_{\text{CH}_3\text{COOH}}^{\text{sec}} \geq 40 \text{ M}^{-1}\text{sec}^{-1}$	This Work

REFERENCES

1. J. Chrysochoos; Chem. Phys. Letts. 14, 270 (1972).
2. J. Chrysochoos; Spectry. Letts. 5, 57 (1972).
3. P. Tokousbalides and J. Chrysochoos; J. Phys. Chem. (In Press).
4. J. Chrysochoos and A. Evers, Chem. Phys. Letts. (Submitted).
5. J. L. Kropp and M. W. Windsor, J. Chem. Phys. 45, 761 (1966).
6. A. Heller, J. Am. Chem. Soc., 88, 2058 (1966).
7. A. Heller, J. Mol. Spectry. 28, 208 (1968).
8. T. Haas and G. Stein, Chem. Phys. Letts. 11, 143 (1971).
9. N. A. Kazanskaya and E. B. Sveshnikova, Opt. Spectry. 28, 376 (1970).
10. G. H. Dieke and H. M. Grosswhite, Appl. Optics 2, 675 (1963).
11. J. L. Kropp and M. W. Windsor, J. Chem. Phys. 42, 1599 (1965).

Received October 13, 1972

Accepted October 17, 1972